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A numerical approach to modeling a biochemical system that includes processes
with significantly different time scales has been developed within the Virtual Cell
environment (J. Scha#ft al,, 1997,Biophys. J.73, 1135). The key features of the
algorithm are time splitting of slow and fast processes and pseudo-steady approxi-
mation based on stoichiometry analysis. We apply the method to study the effect of
fast calcium buffering on the properties of self-sustaining calcium waves in living
cells. Numerical results for one-dimensional traveling waves in one-variable bistable
models are compared with theoretical predictions. The effect of a mobile buffer on
calcium waves appears to strongly depend on buffer affinity and system excitability.
In systems with low excitability, the buffer can stop the traveling wave and make it
move in the opposite direction, which means physiologically that the wave becomes
self-extinguishing. We then consider traveling waves in a more realistic two-variable
model (the Li-Rinzel model). This system exhibits a new feature: in the mode of
low excitability, under certain conditions, it undergoes bifurcation with the buffer
concentration as a bifurcation parameter. As a consequence, for some buffer concen-
trations, there exist two stable traveling waves with very different velocities. Finally,
to study how a fluorescent indicator, which acts as a mobile buffer, might affect the
fertilization calcium waves in eggs, we run three-dimensional simulations within
the Li—Rinzel model using realistic parameters, geometry, and initial conditions.
The results indicate strong interaction of a fluorescent dye with initiating calcium
spikes. As a result, a fluorescent dye added to visualize calcium dynamics in a cell
causes a delay in wave formation and, at sufficient concentration, can prevent a
wave. (© 2000 Academic Press
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1. INTRODUCTION AND BIOLOGICAL BACKGROUND

A general computational framework for modeling cell biochemical processes, the “Virt
Cell,” is being developed at the National Resource for Cell Analysis and Modeling at
University of Connecticut Health Center [1, 2]. Itis intended to be a tool for experimentali
(as well as theorists) to test their hypotheses and models. Models are constructed
biochemical and electrophysiological data mapped to appropriate subcellular domair
images obtained from a microscope. Chemical kinetics, membrane fluxes, and diffusior
thus coupled and the resultant reaction-diffusion equations with specified membrane j
conditions and boundary conditions are solved numerically within the given one-, two-
three-dimensional domains. The results are mapped back to experimental images and «
analyzed by applying the arsenal of image processing tools that is familiar to a cell biolo

Itis generally true that a biological process will be composed of a set of events with va
different time scales. Unless special precautions are taken in numerical calculations
fast events will necessitate a small time step for their resolution, in order to avoid numet
instability. Since the total time for the slow processes to finish is very long, this makes
computations expensive. Thus, one has to address this issue when developing a ge
purpose tool for cell modeling. We first faced this problem when we applied the Virtt
Cell to modeling calcium dynamics in neuroblastoma cells [3, 4]. In this case, calci
buffering—the calcium interaction with molecular species that have calcium binding site
is thought to be a much faster process than the other key elements, calcium diffusion
fluxes from (and back to) the internal calcium stores. In 1994 Wagner and Keizer develc
the rapid buffer approximation to deal with this problem [5]. They used a pseudo-ste
approximation to exclude “fast variables” and derived an effective transport equation
calcium. This equation, in general, is no longer of a reaction-diffusion type. Thus,
could not use this approach in our general framework directly because (1) it would req
a user to do preliminary analytical work, which can often be quite involved, and, mq
importantly, (2) in each particular case the final equations might be of different forms «
require different algorithms. What we need is a general, purely numerical, approach tha
be applied to any reaction-diffusion system with fast subsystems, no matter how com
its reaction scheme is.

We have developed such an approach using the well-known idea of time splitting [6]
our case, time splitting involves updating variables in two steps, separately for slow {
cesses and for fast reactions. Thus, we always remain within a general reaction-diffu
scheme. Inthe currentapproach, to update variables in fast reactions, we use a pseudo-
approximation; i.e., we replace ordinary differential equations with algebraic equations
reflect rapid equilibrium of fast reactions. At this point care must be taken in choos
a number of independent algebraic equations equal to the number of unknowns. Tt
achieved with stoichiometry analysis [7, 8] that results in a coupled system of nonlinea
gebraic equations and a set of linear constraints, corresponding to conservation relation
within the fast subsystem. It is important that the values of “fast” invariants are update:
each time step using results from solving “slow” equations. The stoichiometry analysi
performed automatically within our framework after a user specifies which reactions
considered fast. After the system of nonlinear equations is determined, we use Ne\
iterations to solve it. Solutions from the previous time step serve as a good initial guess
ensure rapid convergence of iterations. Symbolic differentiation is automatically invol
to determine the Jacobian matrix of the nonlinear system.
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The pseudo-steady approximation has its scope of applicability, as illustrated by
example in Section 2. Obviously, it gives accurate results if the ratio of characteristic tir
of fast and slow processesst/tslowis sufficiently small during the transient. In fact, our
results indicate that the relative error introduced by the approximation is roughly of
order of ri5¢/ Tslow. However, in nonlinear systems this ratio may vary in the process a
therefore the inequalityfast/ Tslow<< 1 might be violated. In formal singular perturbation
language, there might be interior layers in the solutions with rapid change of variables
case one would like to resolve the interior layers, more accurate approaches should be
We still can take advantage of time splitting because it allows us to decouple fast and
parts of a system and apply different techniques for their treatment. Staying within t
framework, we can now treat the reaction terms with a stiff solver instead of pseudo-ste
approximation. Still, in many practical applications the species concentrations do not che
rapidly after the initial fast transient, and the pseudo-steady approximation works well.
of the practical conveniences of the pseudo-steady approximation is that it does not re
the values of kinetic constants of fast reactions. All that is required are equilibrium const:
which are usually available from experimental data.

In this paper we apply our approach to study the effect of fast mobile buffers on calci
waves in bistable systems. Calcium oscillations and waves play an important role
prerequisite for triggering various physiological processes such as hormone secretion
division, muscle contraction, etc. [9]. One of the key elements of intracellular calcit
dynamics is calcium release from the endoplasmic reticulum (ER), the internal calci
store, through calcium channels that can be activated by cytoplasmic calcium as we
by other signaling molecules that are present in the cytoplasm, such as inositol-1,
triphosphate (Insf). Two other components of the calcium flux across the ER membra
are direct leak through the membrane and calcium uptake by molecular pumps—the pro
embedded in the membranes that pump calcium ions back into the ER against its gradie
course, to do that, they consume energy). The calcium concentration in ER is several ol
of magnitude higher than that in the cytoplasm; therefore, for many purposes the store
be considered to have infinite capacity. ER has very complex irregular geometry [10]. Be
a continuous closed compartment, it fills a cell with generally non-uniform density wh
occupying only approximately 15% of the cell volume. In a continuous approximatic
it can be modeled by calcium sources and sinks continuously distributed with a cer
density throughout a cell and characterized by certain rates. When combined with calc
diffusion, they give rise to a reaction-diffusion type equation [11]

e _ D.VZe + f, (1.1)
ot
wherec is the calcium concentratior). is the calcium diffusion coefficient, anfl =
Jehanne+ Joump+ Jeeak is the rate of change of calcium concentration due to fluxes throus
calcium channels, pumps, and because of leak. Calcium fluxes across the outer mem
may also influence calcium dynamics and can be taken into account through the appror
boundary conditions.

Calcium buffering is another factor which is now widely recognized to have a stro
impact on the overall intracellular calcium dynamics [12, 13]. Consider the case of a sir
mobile buffer interacting with calcium according to the reaction

Ca+ B = CaB (1.2)
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where B andCaB denote the free and bound forms of the buffer, respectively. Assumi
zero flux boundary conditions for the buffer, same diffusion coefficients for both forr
of the buffer, and the total buffer concentration= [ B] + [CaB] being spatially uniform
initially, b, is then conserved at each spatial point for any0. Here, B] and [CaB are
the concentrations of the free and bound forms of the buffer, respectively. This syste
described by the set of equations

ac

a = DCV2C+ f + Ra

ab

o = DpV?b — R, (1.3)

R = —konc(ly — b) + kortb

whereb=[CaB], Dy, is the buffer diffusion coefficient, ankh, andky are the reaction
kinetic constants. As we mentioned above, calcium buffering is considered to be much f
than other components affecting calcium dynamics, so the pseudo-steady approximatio
be applied. In addition to endogenous buffers (mainly proteins with calcium binding sit
that are always present in a cell, there is another reason that makes the study of the |
effect on calcium dynamics very important. In experimental studies, calcium dynamic
visualized by loading a cell with a fluorescent indicator that acts as a high affinity mot
buffer. It is therefore crucial to know to what extent the exogenous buffer (a fluoresc
indicator) can distort the original pattern.

We chose bistable systems for our study (Fig. 2a in Section 3 shows the typical behe
of the function f (c) in Eq. (1.1) for one-variable systems) because they are known
maintain stable self-propagating waves [14]. Moreover, bistability is thought to be essel
in the phenomenon of fertilization calcium waves [15]. The issues of existence and spee
traveling waves in bistable models in the presence of rapid mobile buffers were consider
arecent paper [16] (see also [14]). The authors of [16] proceeded with the calcium trans
equation derived in [5]. Using a clever nonlinear transformation, they found the condit
for the existence of traveling waves with the domination of high steady state concentra
in the presence of a rapid buffer. However, as we show in this paper, their hypothe
that the low buffer affinity limit yields a universal equation describing the buffer effect
the wave speed, does not hold. Our results indicate that the effect of calcium buffering
traveling waves in bistable systems can be drastically different depending on buffer affi
and system excitability. The latter is characterized by how close the unstable steady
concentration is to that of the lower stable steady state: the closer they are, the more exc
is the system. In particular, there is a threshold in system excitability above which trave
waves cannot be eliminated by a mobile buffer no matter how aggressive its charac
stics are.

We now outline the structure of this paper. In Section 2 we describe our algorithm.
use a simple example of two-dimensional diffusion of a calcium spike in the presenc
a mobile buffer to illustrate the convergence of the method and the applicability of
pseudo-steady approximation. In Section 3 we apply our algorithm to study the effect
rapid mobile buffer on traveling waves in the simple one-variable models [16, 17]. Althou
these models are oversimplified compared to the physiologically relevant mechanisms,
are exactly solvable in the absence of buffers and there are also some asymptotic re
in the case of rapid buffers. Thus, we can validate our numerical results and verify s
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other theoretical predictions. In Section 4 we consider a more realistic two-variable mc
that becomes bistable for some parameter sets. Most of the qualitative conclusions d
in the previous section appear to hold in this case as well. We also found a new feat
for certain parameter sets in the low excitability regime, the system undergoes bifurca
with the total buffer concentration as a bifurcation parameter. Thus, for some total bu
concentrations, there exist two stable traveling waves with very different velocities.

a consequence, in this case the system may sometimes exhibit a discontinuous “p
transition from stable fast to stable slow waves as the total buffer concentration incree
This transition precedes the threshold beyond which no traveling wave with dominat
high steady state concentration exists. Finally, in Section 5 we present the results of tt
dimensional simulations of fertilization calcium waves. They illustrate the possible effi
of a fluorescent indicator. The simulations have been run on realistic geometry with
realistic set of parameters and initial conditions. The results indicate strong interactiol
buffers with initiating calcium spikes. The mobile buffers cause a delay in wave formati
and, at a sufficient concentration, can prevent a wave.

2. NUMERICAL ALGORITHM

In this section, we document our algorithm designed for the reaction-diffusion syste
containing a subsystem of fast reactions where characteristic times differ by two or i
orders of magnitude. The idea of our algorithm is to combine time splitting [6], which
necessary for the separation of fast and slow reactions, with the pseudo-steady apg
mation applied to the fast subsystem. In many applications (see discussion in the pre\
section) the pseudo-steady approximation is well suited for obtaining a good quantita
solution by assuming the fast reactions are in equilibrium at all time after the initial raj
transient.

Letu;,i =1,...,n, be the concentrations of various species involved in the dynami
and governed by a system of reaction-diffusion equations,

ou;

ﬁ:DivzuiJrFﬁ, i=1,...,n, (2.1)

with initial conditions
Ui (x, 0) = u(x), (2.2)

and different boundary conditions for different cases that we study. Bieisethe diffusion
coefficient of tha th species. The effect of all the reactions onittiespecies is represented
by the source tern;, which is a function ofuy, . . ., up.

Assume that there an@ different reactions with rates;, j =1, ..., m, taking place
among the various species. Usually eaghs a nonlinear function of the concentrations
of the species participating in thigh reaction. Thus withy;; being the integer-valued
stoichiometry matrix [8], which represents how many molecules ofithespecies are
produced (the positive sign) or consumed (the negative sign) due tgdhheaction, we
have

R =Zaijvj- (2.3)
=1
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Without loss of generality, let the firdt reactions be fast with rates, ..., v, k<m,
respectively, while the remaining — k reactions are slow with rateg, 1, . .., vy, respec-
tively. Diffusion is assumed to be a slow process which is usually the case in the ler
scale of interest.
In our algorithm, a typical time-step, say fromto T + At, is advanced in two stages.
In both stages, the equations are coupled due to the reaction rate-1, ..., m.
Stagel, due to fast reactions. We solve

k
aU; .
a—tl=zaijvi, i=1,...,n, (24)
j=1
with given initial conditionu; (x, T), i =1,...,n, xC R%. Its actual implementation in-

volves the pseudo-steady approximation and will be discussed below. We let their solt
bel;(x),i =1, ..., n, after atime ofAt.
Stagell, due to slow reactions and diffusion. We solve

dU;

m
P = Divzui + Z ajj vj, i=1...,n, (2.5)

j=k+1

with the same boundary conditions as for the governing equations and initial conditi
0 (x) from the results in Stage |. The result that we obtain after a tinet @ our numerical
approximation tay (x, T + At).

We then repeat Stages | and Il to compute the solution at successive times.

We now describe the implementation of Stage | in the algorithm. In Egs. (2.4), itinvol\
then x k stoichiometry matrixx‘") = @ij, 1<i <n,and 1< j <k. Assume the rank of the
matrixa' ") to ber ; therefore < min(n, k). Its left null spaceV ((«‘")T) has a dimension of
n—r,withabasidly, ..., ln_r} CR". Using (2.4), itisthen easy to verifythﬁft(li -u)=0,
whereu = (ug, ..., uy)T. Hence for fixed,

n
S ajuj=1., i=1..n-r, (2.6)
j=1

where g;; is the jth component of the vectdy, and|; is constant during this time step
(but depending orx), which should be updated from the initial conditions in Stage
Equations (2.6) represent all the conservation relationships among the species with re
to fast reactions.

Let A be a non-singulan x n matrix such that its lagt —r columns are composed of
{l1, ..., In_r}. (Forexample, its firgstcolumns can be composed ofabdsis ..., a } CR"
for the column space af‘". Such a basis can be computed. However, we will employ
different choice below.) Therefore, Eqgs. (2.4) are equivalent to

n

n k

JaU;
> Apt =) Apaijvj, =1,...,n, 2.7
i=1 P at i=1 j=1 A p ( )

since we can get Egs. (2.4) from (2.7) and vice versa. Thelastequations correspond to
Egs. (2.6). We now apply the pseudo-steady approximation to the @ggtations assuming
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the fast reactions to be in rapid equilibrium; thus we will ignore the time derivative on t
left hand side. Hence the finstequations can be approximated by

k
> Gpyy=0. p=1....r (2.8)
j=1

wheredp; = Y Aipaij. In summary, in Stage | we solve Egs. (2.6) and (2.8) to upda
ui,i=1,...,n.

Our choice of matrixA makes it trivial to determine ,;: we just have to pick rows of
matrixe (") that correspond to “independent” variables. It also simplifies programming a
makes the overall algorithm more efficient. The construction of the mattixat we use
is described below. Of course, such a choice is for convenience only and does not alte
final solutions. In fact, it can be rigorously proved that the solution to Egs. (2.6) and (2.8
independent of the choice of the matéx so long as its lagt —r columns are composed
of {l1, ..., l,_r} and it is non-singular (see Appendix A).

Since the rank of the matrig in the linear equations (2.6) is alwags-r, we can find
r free variables among all thg so that the remaining —r of them can be expressed as
a linear combination of such free variables by performing Gaussian elimination. The f
variables can be read off from the structure of the echelon métriesulting from the
Gaussian elimination. Putting such relations back into Egs. (2.8), we obtain a syster
r nonlinear algebraic equations for thendependent;;. We solve this nonlinear system
using the Newton’s method, with a good initial guess being the initial conditions for su
Ui in Stage .

We now describe how we construct the mathixLet the location of the free variables
bei =iy, iy, ...,i;. For eachij, j=1,...,r, we construct a unit vector iR" whose
components are zero except at thgosition where we assign a value of 1. For example
if i, =2, then we construct the vectod, 1,0,...,0)". It is easy to see that this set of
r vectors,{b], ..., b}, and then —r rows of the matrixJ form n linearly independent
vectors, since together they forrmax n upper triangular matrix with non-zero diagonal
entries. But the row space &f is the same as the row space of the magjxwhich is
also equal to the left null space &f («()T); therefore{by, ..., b,} and{l1, ..., ln_}
are linearly independent. Henfie,, . . ., b} can be employed in the firstcolumns in the
construction of the matrid, giving

A=(bl,...,br,ll,...,lnfr). (2.9)

Correspondingly, the matrix feduces to a choice of thgj)th, j =1, ...,r, rows of the
matrix ().

In the implementation of Stage Il, any standard algorithm can be employed. Currel
we use a finite volume method [18] for the implicit time discretization of the diffusion terr
and an explicit treatment of the nonlinear reactions in Egs. (2.5). This gives us numel
stability and avoids the solving of nonlinear equations in this step. By itself, the lot
discretization error in this step is first order in time and second order in space.

There are two additional sources of error for this time splitting method. First, we he
broken down the original governing equations in a typical time atéjinto two simpler
steps (Stages | and Il), each with simpler Egs. (2.4) and (2.5), respectively. Even if
solve these simpler equations exactly, we already invoke the time splitting error. The sec
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source of error comes from the pseudo-steady approximation. As we discussed in Sect
such approximation gets better when there is a substantial difference in characteristic t
between fast and slow processes. In our actual numerical experiments, numerical sta
and convergence are observed, with an overall accuracy of first order in time.

This algorithm has been implemented as a part of the Virtual Cell software. Its devel
ment has been motivated by the requirement to fully automate the treatment of fast rea
kinetics within the Virtual Cell modeling environment. To run a simulation with the Virtue
Cell, a physiological model (reactions, diffusion, and membrane fluxes topologically
ganized by cell compartments), a geometric model, which represents anatomical feat
membrane locations, and the domain size, and a set of simulation specific requirements
tial conditions, boundary conditions, external stimulus, and the selection of “fast” reactic
have to be specified (http://www.nrcam.uchc.edu/). From this specification, a mathema
model is automatically constructed including simplifications based on mass conserve
relationships and, if necessary, the pseudo-steady approximation discussed in this
A major feature of the Virtual Cell design is that the description of the physiology is ¢
coupled from the choice of an appropriate mathematical treatment for a given simulat
which depends (among other things) on the spatial and time scales of the physiolo
guestions being asked.

The biochemical reactions, anatomical features, geometry, and simulation specifice
are graphically edited within the Virtual Cell Java applet [19] running within a web brows
Allthat a user has to do to invoke the “fast” algorithmis specify in the reaction editor the re
tions that are considered fast. The time splitting, stoichiometry analysis, and pseudo-st
approximation are then automatically performed and, for spatial problems, the resul
system of partial differential and algebraic equations is sent to our solver environmen
a remote server, where code is generated and linked into existing C++ numerical libra
In the case of a non-spatial (compartmental) problem, the system of ordinary differer
and algebraic equations is solved within the web browser and is accompanied by a |
sensitivity analysis. In either case, the results are then displayed within the applet.

We now illustrate how our method works with a simple example of two-dimensior
diffusion of a calcium spike in the presence of a mobile buffer, a situation when calci
is spontaneously released from a channel (a calcium “spark” [20]) or injected at a spe
location in the cytoplasm loaded with a fluorescent dye. The systemis described by Egs.
with f =0. Thus in this simple case, we have two variahlgs= c and u, =b coupled
by one fast reaction. Using our approach, we perform time splitting and pseudo-ste
approximation that result in a “slow” subsystem,

ac
5 = DCVZC,
3b (2.10)
— = DpV?b,
ot
and a “fast” subsystem consisting of a “fast” invariant (see (2.6)),
c+b=1, (2.11)

and a nonlinear algebraic equation,

c(b; — b) = Kb, (2.12)
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where K =K/ Kon is the dissociation constant. The fast and slow subsystems are tl
solved in two steps as described above.

To test the validity of our algorithm, we will compare its numerical results with thos
from a regular algorithm which does not perform time splitting and uses a small time s
all the time to resolve the fast reaction (this type of algorithm is employed in Stage 1l of ¢
approach). Both methods are used to run simulations on a two-dimensional square do
with dimension(—L, L) x (=L, L) with initial conditions

2
cX,0) =cp+ g:;lZ exp(—%), b(x,0) = % (2.13)
and zero flux boundary conditions for both species.

In this example, we use the system of units which is often convenient in physiologi
applications. In this system, length is measured in micrans)( time in milliseconds (ms),
and concentration in micromolargi, 1 M = 1 mole/litre). In these units, the parameter se
employedinthe simulationsis as follovis=10,D, =5 x 1073, D, =5 x 1072, K =0.24,

o =0.5,¢c0=0.05,c; = 10.0, andb, = 10.0. We will use different values fdg,, thus varying
the characteristic time of the fast reaction.

We first demonstrate the convergence of the regular algorithm. For that matter, we
simulations for the relatively larde, = 0.25 (the numerical convergence for smakgyis
easier to achieve), with the decreasing time gtepnd mesh siz&\x such thaiAt oc (Ax)2.

A spatial mesh size akx; =h/2',i =0, 1, 2, and the corresponding time st&f are used
to determine the solutiod; (x) of eitherc or b at some timeT . Since we expect the error
to be O(At) + O((AX)?), it can be shown that the ratio

[Uo — U4ll2
U —Uz|l2

,
1

(2.14)

should be close to 4 whdnis small. In Table | we present the results for this ratio obtaine
with h=0.5 andAty =0.01, At; =0.0025, andAt, = 0.000625. The good agreement with
the predicted value confirms the expected convergence of the general algorithm.
From now on, we regard the numerical solutions computed in this way using 0.5
and At =0.01 as the standard solutions (we estimate thatTfor 5, they are accurate
within 0.7%). To study the effect of time splitting and pseudo-steady approximation,
then compare these solutions for varidygs to the one obtained using our fast algorithm
for the same discretization parameters. Note that when using the pseudo-steady apj
mation, we need onlK and do not require a value fdg,,. In this example, the charac-
teristic time of the fast reaction can be estimated:as=1/(konb;) while time scales of
slow diffusion arer. =02/D. and 1, =02/ Dy, for calcium and the buffer, respectively.

TABLE |
Ratio r of Eq. (2.14) for the Variablesc and b at Varying Time

Time, T (ms) Variablec Variableb
10 4.54539 4.41447
20 4.23496 4.20957
30 4.15328 4.14222

40 4.11376 4.10754
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FIG. 1. Results of the “full” solution forc(x, t) obtained with increasing reaction rates, as compared to
those of the “fast” algorithm (solid lines). (&)= (1, 0); (b) x= (1.5, 0); (c) x= (1.5, 1.5).

As discussed in Section 1, the pseudo-steady approximation should give accurate res
Trast << MIN(t¢, 7p), Which leads tdko, > max(De, Dp)/(byo?) =0.02. In Fig. 1 we present
the time history ofc(x, t) for somex. We see that ak,, increases, the standard solutions
(computed using the samtex andAt) approach the pseudo-steady approximation solutio
In fact, whenrky, > 0.25, the two profiles virtually coincide. Such results show that pseud
steady approximation is an accurate algorithm wkgris large. Moreover, it is efficient
because the fast time scale has been filtered off.
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Inthe following sections we use our algorithm to study the effect of a mobile buffer on c
cium waves assuming calcium buffering is fast enough for the pseudo-steady approxime
be applicable.

3. BUFFERED TRAVELING WAVES IN ONE-VARIABLE BISTABLE MODELS

We start our application with very simple one-variable bistable models described
Eqg. (1.1) wheref is a function of one variablef (¢), that typically behaves as shown in
Fig. 2a. It is important for bistability that (c) has three zero8,in < Cop < Crax, Which in
the absence of diffusion would correspond to the concentration values in two stable st
states separated by an unstable steady state. In physiological applications the system u
rests at a steady state with lower concentra@igf. Thus, to excite the system, we have tc
overcome the concentration barri@y — Cin. Therefore, the position of the unstable stead:
state concentratioBy with respect t&C,in andCmax Characterizes the system excitability. In
the presence of diffusion, bistable models are known to allow for the solutions of a trave
wave typec(x + vt) =c(§) with a constant wave speed[14, 21] (a wave with positive
wave speed travels to the left).

We consider two models: one employs a piecewise linear funéti@PL model), and the
other uses a cubic polynomial (a CP model) [14, 16, 17]. Both the high and low excitabi
regimes in each model are studied. In the absence of buffers, both models admit €
analytical solutions with explicit wave speeds. There are also some formal asymptotic re:
available for fast-buffered traveling waves in one-variable bistable models, which allow
to assess the accuracy of our numerics. Thus, we pursue two goals when applying
numerical approach to the oversimplified one-variable models. First, we validate, when

f(c) &

\ /. .
Cuw JC, c,,,,x\ ¢
b
c“Cmnx
C in
> x

FIG. 2. (a) Typical shape of the functiohin one-variable bistable models. (b) Typical traveling wave profile
in one-variable models.
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possible, our algorithm against exact analytical results, and second, we verify predict
based on our theoretical analysis.

3.1. Theoretical predictions.The functionf in the PL model is described by the equa-
tion

f(c) = b(c — Cp) — I'(C — Chin), (3.1)

wheref is a step function with

1 if x>0
00 = {o if x <0.

The first term on the right hand side of Eq. (3.1) is the rate of calcium release from
internal stores through calcium channels [17]. Hekeglenotes the amplitude of this rate
andC, is the threshold calcium concentration above which the channels get activated.
second term on the right hand side of Eq. (3.1) describes the rate of calcium uptake bacl
internal stores due to calcium pumps. This rate is assumed to be linear with respect to cL
calcium concentration in the PL model. Obviously, in this ma@gly= Jo/T" + Cmin. The
traveling wave speed in the PL model is

[ 3D 1—2p r
= , wherep = —(Cop — Cpin)- 3.2

In the CP model

Jo
c3

max

vo = JO Dc Cmax - 2CO + Cmin ) (3.4)
2Cmax Cmax

In the presence of a mobile buffer, the system is governed by Egs. (1.3). One can p
that this system also has a unique monotone traveling wave solution connecting two s
steady states and a unique wave speed [22, Theorem 2.1, p. 15]. In the limit of fast buffe
one can derive an asymptotic wave speed (see Appendix B)

_ Crmax Dpb K
h oK Dbtk (dc)?  \ 7!

In the limit of low buffer affinity K /Cmnax> 1, as shown in Appendix B, this equation
reduces to a well known expression for the wave speed [16, 17],

1/2 -1
V= vo(1+ Bbit) (1+ it) , (3.6)

f(c)= (€ — Ciin) (€ — Co) (Cimax — ©), (3.3)

and the wave speed is
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whereuy is the speed of a wave in the absence of buffering. In addition to direct we
speed measurements described in the next subsection, Eq. (3.5) provides an alternat
of determining the wave speed from simulation results.

Although Eq. (3.5) is not explicit, we can get some important insights by analyzing
Definey = Dyhy /D¢. Let us fixCp,in andCax and vary the system excitability by changing
Co. To emphasize this fact, we writie(c) = f (¢, Cp). Then from Eg. (3.5), the sign of the
wave speed (and, consequently, the condition for the existence of the traveling wave
the domination of the higher steady state concentration) is determined by the sign of
integral

ve [t c>(1 K Ve (3.7)
Z/c e +<K+c>2) ’ '

which depends both on system excitability and buffer characteristics. This is in agreen
with the result of [16] obtained by means of a particular nonlinear transformation. \
further define

Cmax Cmax f ’ C
G(Co) E/C f(c, Co)dc, H (Co, K) E/C H _

min min

Since it is easy to check for the PL and CP models 8HdabCy < 0, hencedG/dCp < 0
andaH/dCq < 0. Then there are unique values@y, ¢, andt = &(K), such that(c) =0
andH (€, K) =0. SinceH (c, K) < 0, theng € (Cnin, €) and¢ tends toc asK increases.

We now fixK and consider an@o € (Cmin, €] (high excitability regime); then the integral
(3.7) is positive irrespective of the value pf In other words, the traveling wave speed is
always positive no matter what total buffer concentration we introduce and how large
diffusion coefficient is, as long as the system excitability is sufficiently high. On the otf
hand, wherCy € (€, ) (the low excitability regime), there is a threshold value/of

1 G(Cyp

Y& ="K H(Co, K)’ (2.8)

such that fory > yc,, there are no traveling waves with positive speed€lf- ¢, wave
speed is negative (the lower steady state concentration dominates) for any combinati
buffer parameters.

Finally, it is interesting to note that the dependence of the numerator in Eq. 3.6
Dy, is drastically different in regions of the high and low excitability: & < € the wave
speedV is positive andVV /3 Dy, > 0, while forCy € (€, €), 3V /3Dy < 0. Thus, in situations
when the numerator of Eq. (3.5) plays a dominant role in determining the wave speec
increase of the buffer diffusion coefficient may speed up or reduce the wave velocity in
high and low excitability modes, respectively. In the low affinity lindif Crnax — 00, when
the low excitability region is disappearing becaiise c, we expect the wave speed to be ar
increasing function oDy, for anyCgy € (Cpin, C), in accordance with Eq. (3.6). However, in
the case of a high affinity buffer and low system excitabil®y € (€, c)), this dependence
might be the reverse. In this case, the growtgfwill lead to a pointy = y¢, at which the
traveling wave with a positive wave speed ceases to exist. Our numerical results prese
below confirm such a conclusion.
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3.2. Numerical results. We first describe our choice of the parameter values employ
in the PL and CP models. The calcium diffusion coefficient in the cytopl&sns thought
to be 3—4 times smaller than in water and estimated ag@3%0s [23]. But because of the
endogenous buffers that are always present in a cell, the effective calcium diffusion
be 10-50 times slower. Since the endogenous buffers compete for calcium with exoge
(added) buffers, one should explicitly introduce both types of buffers in the simulation.
use this approach in our three-dimensional (3D) simulations of fertilization calcium wa
(see Section 5). In this section, however, it is beneficial to keep models simple in orde
facilitate comparison with the exact results. Therefore, in our one-dimensional (1D) s
ulations we assume the reduced effective calcium diffusion coeffifignt 22 um?/s to
account for the effect of endogenous buffers and explicitly introduce only one mobile
ogenous buffer into a system. In the physiological range, the maximal calcium concentre
is of the order of 1-24M and the wave speed is in the range of 1+20/s.

The parameter values that we use in simulations satisfy these constraints. In the PL n
we USECpmin = 0.05uM, Jo= 1.5 uM/s, andl’ = 1.0 s*%, which yieldCpax= 1.55 uM. As
we mentioned above, we will consider two different levels of system excitability, relative
high excitability alCo = 0.15 1M and relatively low excitability a€y = 0.55 uM. It follows
then from Eq. (3.2) that

{16.2964um/s atCy = 0.15 uM (high excitability)
Vo,exact =

3.3166um/s  atCo = 0.55 1M (low excitability). (3.9)

In the CP model we us€nin =0, Cnax= 1.0 uM, Jo=20 uM/s and assign the values
of 0.1 and ® uM to Cy for the high and low excitability, respectively. For this set o
parameters Eqg. (3.4) yields

11.8659um/ tCo = 0.1 uM (high itabilit
UO,exact:{ um/s  atCqy uM (high excitability) (3.10)

2.9665um/s atCy = 0.4 uM (low excitability).
In most simulations, we use a step function as initial calcium distribution,

Cmax X <0

c(x,0) =
( ) {Cmin» X >0,

and a buffer being initially in equilibrium with calcium; in some PL model simulation:
however, we initiated the wave by a calcium spike of a Gaussian form. In these numei
experiments, by the time the concentration behind the wave front approaches its steady
value, the wave has practically settled in its traveling wave profile.

To measure the speed of a simulated traveling wave after the transient dies down
evaluate the average velocity of the point with the same prescribed concentration o\
certaintime. The coordinate of the point at the end of the time period is determined by m
of interpolation. The interpolation error introduced in the wave speed measurement ca
suppressed by taking the average over several measurements. In our practical implen
tion we repeated measurements by varying time and locations on the wave front unti
standard error becomes less than 1%. The measured speed should be time independe
the same for any prescribed concentration that we pick. These requirements serve as a
whether the wave has settled down or not. In order to compare with the exact wave sy
we have to take a sufficiently large computational domain to ensure that the boundarie



200 SLEPCHENKO, SCHAFF, AND CHOI

the computational domain, where we impose zero flux boundary conditions, do not af
the traveling wave. In some cases this requirement leads to a rather large computat
domain.

Taking all the precautions described above, we first perform experiments for cases witl
buffers. A trade off between accuracy and reasonable time of computation was achiev
the mesh size\x =0.2 um and the time steprt =1 ms with up to 5000 mesh points in
the domain and the simulated time in the range of 15-200 s. The numerical results obte
with these discretization parameters are as follows. For the PL model,

16.1763um/s atCp = 0.15 uM (high excitability)
Vo,num = - (3.11)
3.2859um/s atCp = 0.55 uM (low excitability),
and for the CP model,
11.8292um/s atCy = 0.1 uM (high excitability)
Vo,num = oL (3.12)
2.9641uml/s atCy = 0.4 uM (low excitability).

Comparing such wave speeds with the exact values in (3.9) and (3.10), we conclude
the numerical results are accurate within 1%. It is also not surprising to find that the
model simulation is not as accurate because the function (3.1) employed in this mod
not continuous.

We use similar discretization parameters to simulate systems in the presence of bu
In this case we check our numerical results against (i) the asymptotic solution (3.6) in
low affinity limit, (i) the critical value (3.8) at which the wave speed becomes zero, a
(iii) we use the wave speed (3.5) to double check results in the general circumstances
the tests indicate that the numerical results we present below are accurate to within 2
the theoretical values.

We first consider the high excitability mode and vary buffer affinity at a fixed buffe
diffusion coefficientD, = 10 um?/s. The plots of the normalized spegtl vs the binding
ratio b;/K are shown in Fig. 3. Both the PL and CP models exhibit qualitatively simil:
behavior. The solid lines represent the exact dependencies (3.6) in the low affinity li
K /Cmax= 00. As expected, the numerical pointskat= 100 M follow closely the theo-
retical curve of the low affinity limit. (Recall th&@ .« are 1.55uM and 1M in the PL and
CP model, respectively.) Somewhat surprisingly, the low affinity limit also provides a go
approximation fork =1 M. However, the results in the high affinity case=0.1 uM,
deviate significantly from Eq. (3.6). Thus, the hypothesis made in [16, p. 118], that wt
K is small the speed of the traveling wave can still be approximated by Eq. (3.6), does
hold even in the case of high excitability (Eq. (3.5), however, holds). In the case of |
excitability, such a claim produces an even more erroneous result, because the wave
from (3.6) is always positive. In reality, as we have seen in Subsection 3.1 and demonsti
by numerics later on, at some parameter sets the wave speed can become negative.

Next, we keep the buffer affinity high( = 0.1 «M) and vary the excitability. In the
low excitability regime in both models there is a threshold buffer concentrbtipabove
which there exists no traveling wave with the dominating high steady state concentrat
The theoretically predicted values (see Eq. (3.8)) for the sets of parameters emplo
b c = 1829 uM for the PL model and, . = 0.7154uM for the CP model, are in excellent
agreement with the numerical results (see Figs. 4a and 4b). Itis clear from both figures
if we continuously increase system excitability, there will be a threshold above which
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FIG. 3. Normalized wave speed vs buffer binding ratio for varying buffer affinity in the high excitability mod
for D, = 10um?/s. (a) PL model; (b) CP model.

wave with the dominating high concentration exists no matter how aggressive the bt
characteristics are. This conclusion is also consistent with the theoretical predictions.

It is interesting to note that the soluti@) for the zero wave velocity has a wave-like
profile (see Fig. 2b). This means that a bistable system allows for a spatially non-unifi
steady state with non-zero calcium fluxes, production, and consumption at the wave f
(of course, this is also true in the absence of buffers). Physically, this is possible only if tt
are permanent sources of energy necessary for calcium pumping. Above the critical b
concentration, a traveling wave with the dominating low steady state concentration ex
In other words, it moves in the opposite direction, or has a negative speed. Itis interestir
see how the absolute value of speed will change if we further increase buffer concentra
Figure 5 shows that after the initial increase, it goes down. From the physiological pt
of view, the wave becomes self-extinguishing above the critical buffer concentration
cannot be initiated by a calcium spike over the uniform steady state with low calci
concentratiorCpn.

Finally, we study the change in wave speed behavior with respect to the buffer diffus
coefficient at varying excitability. As one might expect from the theoretical analysis
Subsection 3.1, the results presented in Fig. 6 indicate that for a fixed buffer affinity, a la
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FIG. 4. Normalized wave speed vs buffer binding ratio for varying excitability in the case of a high affini
buffer, K =0.1 uM, for D, =50um?/s. (a) PL model; (b) CP model.
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FIG. 5. Normalized wave speed vs buffer binding ratio for larger concentrations of a high affinity buffer
the CP modelK =0.1 M, D, =50um?/s.
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FIG.6. Normalized wave speed vs buffer binding ratio for varying system excitability and buffer diffusion
the CP model aK = 0.1 uM.

diffusion coefficient leads to a faster wave in the regime of high excitability, but the we
will be slower in the low excitability mode. In fact, with increasibg (at a fixed total buffer
concentration), the wave slows down to zero speed at some critical valig ofhen the
wave ceases to exist physiologically.

Overall, as one would expect, adding a buffer slows down the wave speed in all nume
experiments. Thisis because calcium buffering leads to an effective decrease in both cal
release from channels and calcium diffusion [17].

4. BUFFERED TRAVELING WAVES IN A TWO-VARIABLE MODEL

In this section we study the effect of a rapid mobile buffer on traveling calcium wav
in a more realistic two-variable model of calcium dynamics. This is a simplified Li—Rinz
model [24] which has been successfully applied in the studies of the calcium dynan
[3, 15, 25]. It is based on the detailed eight-state De Young—Keizer model of g)insF
sensitive calcium channel [26]. This channel consists of four subunits, each with binc
sites for InsR and C&*. Calcium flux through the channel is regulated by kaRd C&*+
binding to these sites. In this paper we assume for simplicity that thg tmsfeentration is
constant so that it does not enter the governing equations. This simplification is approp
in certain experimental conditions [11, 15], although the complete model should inclt
the dynamics of Insf{3, 4, 11]. According to the De Young—Keizer model, each of the fou
channel subunits has two &abinding sites; one activates the channel and the other inhib
it. It is further assumed that, for a channel to be open, three of the four subunits she
have a bound activation site and a free inhibition site. The simplification made in [24] ta
advantage of the fact that both the Igdfinding and the C& binding to the activation site
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are much faster than the &abinding to the inhibition site. Thus, calcium binding to the
inhibition site is the only slow process in the channel kinetics in the Li—Rinzel model.

In the absence of a mobile buffer, the model contains two variables: the calcium conc
tration, ¢, and the probability that the inhibition site is free of calcium. These variable:
are governed by the equations

% = D.V%c + f(c, h),
(4.2)
oh — g, h)
ot 9
where
ch \° c2
f(C, h) = JO(C+ dact> — me +L (42)
a(c, h) = kon (dinh — (dinn +0)N) . 4.3)

The firsttermin (4.2) describes the rate of calcium release from a channel with an ampli
Jo and a dissociation constant for the activation bindingaite The second term is the rate

of calcium uptake through pumps with a maximal valseand a dissociation constai,

for the calcium binding to a pump. The model also accounts for the constant leak of calci
with rate L, from the internal stores to the cytoplasm. Equation (4.3) describes calci
binding to the inhibition sites, with a rate constégt and a dissociation constaat,.

For some parameter sets, the model is bistable [15]. Although the simple analysis o
previous section, which is valid for one-variable bistable models, does not apply in this ¢
it is likely that the relative location of steady state concentrations (for Egs. (4.1) withc
diffusion) may still control the system excitability. Thus, we again consider two mod
when the unstable steady state concentrafigiis close to and far from the low steady
state calcium concentratid@y;,. In analogy with the previous section, we will call them
the modes of high and low excitability, respectively. The corresponding sets of param
values and the steady state concentrations are documented in Table Il and the res
nullclines with f (c, h) =0 andg(c, h) =0 are plotted in Fig. 7.

TABLE Il
Parameter Sets Providing Bistability of the Li—Rinzel Model
with High and Low Excitability

Parameter Units High excitability Low excitability
N uM s 100 110
Gact uM 0.7 0.7
Vi uMs? 1.0 1.0
Kp uM 0.25 0.1
L uM s 0.0151 0.1755
Kon (uM)~t st 4.0 4.0
dinn uM 0.6 0.5
Chin uM 0.05 0.05
Co uM 0.1 0.3

Crnax uM 1.187 1.022
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FIG. 7. Nullclines of the Li—Rinzel model for the cases of high (a) and low (b) excitability.

With a larger set of parameters being involved in the model, there are various way
changing system excitability. In particular, one can vary the relative positions of the ste
state calcium concentrations with little effect on the wave speed. This is in contras
the one-variable models where a change from high to low excitability automatically le
to a decrease in the wave speed, as can be seen from Eqs. (3.2) and (3.4). As seer
Table I, we can now switch the system from high to low excitability by increasing tt
pump affinity and channel inhibition site affinity to calcium, while keeping the paramete
Jo andd, (that control the wave speed [17]) essentially the same. (As a consequence,
is also a considerable change in the leak constant to maintain the flux balance at the
steady state with a fixe@min = 0.05M.) As a result, we get similar wave speed values
vo=16.41um/s for the high excitability mode, ang = 15.80 um/s for the low excitability
mode, as opposed to the results (3.9), (3.10) obtained for the one-variable models. How
in the presence of a mobile buffer, the system with low excitability turns out to be “relucta
in maintaining fast stable traveling waves. As the total buffer concentration increases,
system undergoes a discontinuous “phase” transition to the states with slow stable trav
waves (see Fig. 10 and discussion at the end of the section).

In the numerics above, we have used a step function for the initial calcium concentrat
while the initial conditions foh are determined frorg(c(x, 0), h) =0. Zero flux boundary
conditions forc are imposed. As in the earlier sections, we observe numerical converge
upon decreasing mesh sizes and time steps. The accuracy is within 1% erraxtvhdms
andAx = 0.25um, with 4000—4500 points in the computational domain.
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We use similar discretization parameters to simulate the system in the presence
buffer. In this case the resulting set of equations becomes

doc

5= D.V% + f(c,h) + R (4.4)
oh
— = h 4.5
ar = 9@, (4.5)
ab
o= DpV2b — R (4.6)

with R from Eq. (1.3c). We again assume fast buffering. The wave speed (3.5), which r
takes the form
*° Dy ob dc
= 1+ ——|f hE)—
v (/w ( o 8C) CONO ds)

(LR @) e

with db/dc=Db,K /(c(&) + K)?, is used to double check the results for the wave spee
Overall, we estimate that the results we present below are accurate within 2%.

First, we consider the high excitability mode with varying buffer affinity for a fixed buffe
diffusion coefficient. The low affinity limit Eq. (3.6) for one-variable models does not app
in the multivariable case; however, considering the wave speléd=a100uM in the two-
variable model as a low affinity limit, we obtain the results presented in Fig. 8, which
qualitatively similar to those for the one-variable models (Figs. 3a, 3b).

Next, we study how the wave speed will be affected by the high affinity buffers with ve
ious diffusion coefficients. Similar to the one-variable models, this effect strongly depe
on the system excitability. Numerical results in Fig. 9 show the dependencies of the w

| ?
0.8

o K=10#M

o

£ aK=1HM
o K=0.1HM
— K =100 #M

30 40 50
b/K

FIG.8. Normalized wave speed vs buffer binding ratio for varying buffer affinity in the high excitability mod
of the Li—-Rinzel model D, = 10 um?/s).
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FIG.9. Wave speed dependencies on the total concentration of a high affinity baffe0(1 M) at varying
buffer diffusion coefficient in the high excitability mode of the Li—Rinzel model.

speed on the total buffer concentration at varying buffer diffusion coefficients in the h
excitability mode. As in the one-variable models (compare to the two upper plots in Fig
for the CP model), the wave speed increases with the buffer diffusion coefficient and
never become negative. As for the low excitability mode, referring to the numerical res
in Fig. 10, we see that the wave speed decreases with the buffer diffusion coefficient
fixed total buffer concentration. When the total buffer concentration exceeds a critical le
the wave speed becomes negative as in the one-variable models.

In this case, however, with increasing total buffer concentration, we observe a suc
drop of wave speed preceding the change in the wave direction (Fig. 1@). fé@d close
to, and to the right of, the sharp transition, the wave speed gradually decreases in

0.8 - \

2
—t— Dy =
06 | Dy =25 Hm'/s

—e— Dt = 50 Hm's

v/vy

0.4
—a— Dy = 100 Hm’/s

0.2 1

-0.2 -

b, (micro M)

FIG.10. Wave speed dependencies on the total concentration of a high affinity bG#ed(1 M) at varying
buffer diffusion coefficient in the low excitability mode of the Li—Rinzel model.
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FIG.11. Hysteresisloop inthe wave speed dependence on the total buffer concentration in the low excitat
mode of the Li-Rinzel model, & = 0.1 xM and D, =50 um?/s.

from high to low values while the wave is settling in its stable profile. Thus, there is
finite interval of wave speed values for which no stable traveling wave exists. If we st
with a wave profile, corresponding to a high total buffer concentration, and then gradu
decrease the buffer concentration in our numerics, the jump occurs at a lower critical ve
Thus, we observe a typical hysteresis loop presented in Fig. 11, which can be regard
a magnified picture of the middle curve in Fig. 10 near its discontinuous jump. Thus,
a fixed buffer diffusion coefficient, there are at least two stable traveling waves with v
different velocities when the total buffer concentration lies in a certain interval. Since we |
an initial value problem solver to track down a traveling wave, only stable traveling way
are accounted for in Figs. 10 and 11. We expect the full picture to be a reSeave

as depicted in Fig. 12, with bifurcation occurring when we cross the limit paatand

v

b,

FIG. 12. A full reverse S-curve with the unstable bran&hA,.
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A,. Because the middle branch in the reveSsecurve usually corresponds to the unstabls
traveling waves, a continuation algorithm [27] has to be employed to trace the full respc
curve.

When the total buffer concentration is such that there are two stable traveling wa
each of the two stable branches has its own domain of attraction. Initial conditions
are close to one of the stable wave profiles will usually be attracted to it. If we push
total buffer concentration beyond the limit points (say, we start with the wave that |
longs to the fast branch and then increase the buffer concentration to the value for w
there exists only one stable wave on the slow branch), since now there is only one s
traveling wave, a large change in the wave speed has to take place to settle down
the stable wave profile. Such a discontinuous change is a hallmark of a bifurcation
ing place in the system. No similar phenomenon has been observed in the one-var
models.

Finally, we note that as in the one-variable models, the wave speed decreases wit
total buffer concentration.

5. THE 3D SIMULATIONS OF FERTILIZATION CALCIUM WAVES

It was recently suggested [15] that bistability is essential for the fertilization calcit
waves experimentally observed in eggs after sperm fusion [28]. The calcium dynamic
living cells is visualized by injecting a fluorescent indicator that has calcium binding sit
When calcium binds to a binding site, it modifies fluorescent properties of the indicator,
the recorded changes in fluorescence closely follow the dynamics of the indicator bc
form. Thus, a fluorescent indicator acts as a calcium buffer, in addition to the endoger
buffers (the proteins with calcium binding sites) that are always present in a cell.
fluorescent indicators usually used in biological experiments (e.g., fura-2 and Calc
Green [29]) have properties of fast, high affinity mobile buffers, and, as we saw in
previous sections, can significantly influence the properties of calcium waves. Itisimpor
to note that experimentally observed fertilization calcium waves are not traveling pl:
waves. They are transient processes initiated by a localized spike-like perturbation
finite domain constrained by a cell membrane.

The Virtual Cell framework, within which we have developed the capability of treatir
fast reactions, allows us to run three-dimensional simulations using realistic geometry
realistic initial and boundary conditions. For example, our simulations of calcium wave:
neuroblastoma cells [3, 4] use the geometry derived directly from experimental microsc
images. In this section, we simulate fertilization calcium waves in a spherical cell (an €
with a diameter of 5(um using the Li—-Rinzel model (see Egs. (4.1)). A physiologicall
reasonable set of parameters given in Table Ill provides system bistability in the h
excitability mode. We introduce two types of buffers in our 3D simulations. The immob
low affinity buffer, with a dissociation constamt; =10uM and a total concentration
b, =200uM, represents endogenous buffers, while the mobile high affinity buffer, wi
a diffusion coefficientD, = 50um?/s and a dissociation constalks = 0.24 M, mimics
fura-2. We will vary the total concentratidn » of the mobile buffer in our numerical
experiments. Leb; andb, be the concentrations of the bound forms of the endogeno
buffer and the fluorescent indicator, respectively. Withndh as defined in the previous
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TABLE Il
Parameter Values Used for the Li—Rinzel Model in 3D
Simulations of the Fertilization Calcium Waves

Parameter Units Value
J uM s 1000
Gact uM 0.7
dinn uM 0.6
Kon (uM)~tst 2.0
(A uM st 10
Kp uM 0.25
L uM s 1.51x 1072
b1 uM 200
Ky uM 10
K, uM 0.24
D (um)y? st 220

section, the governing set of equations is

ac
= D.VZc+ f(c,h) + Ri+ Ry,

ah

— = g(c, h),

m g(c, h)

aby

= = —Ry, 5.1
ot 1 (5.1)
aby, 5

< = DpV%h, — Ry,

ot b 2 2

with Ry = —Kon1(bt,1 — b1)C + Koft, 101 @and Ry = —Kon 2 (bt 2 — D2)C + Kot 2002. Herekon 1,
Kon2, Kot 1, andKe 2 are the buffering kinetic constants. Assuming fast buffering, we app
our approach and perform time splitting and pseudo-steady approximation. After that,
system (5.1) reduces to a “slow” subsystem,

3
oc _ D.V%c + f(c, h),

at

oh

—_ = C’h s 5.2
m g(c, h) (5.2)
by )

—< = DyV?b

9t b 25

a “fast” subsystem, consisting of a “fast” invariant (see (2.6)),
C+by+hby=1, (5.3)
and a set of nonlinear algebraic equations,

c(by,1 —by) = Kiby,

(5.4)
c(b 2 — b)) = Kaby,
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whereK; =Kot / Koni, i =1, 2. We then numerically solve Egs. (5.2)—(5.4) using our twc
step algorithm as described in Section 2.

We initiate a wave by a calcium spike localized near the cell membrane. The spik
centered at the membrane and has a radiusuoh &nd an amplitude of 30M. The initial
conditions forh are determined as in the previous section. Both buffers are initially
equilibrium with calcium. Assuming that the calcium fluxes across the cell membrane
be ignored in this problem (see discussionin [15]), we use the zero flux boundary conditi
To reduce the time of computation, we take advantage of the rotational symmetry in
problem and perform calculations only in a quarter of the sphere. The discretization tha
employ isAXx= Ay = Az=0.65um (this mesh size results in 136,161 mesh points) ar
At =0.001 s. We estimate that the results are accurate to within 5%.

We run simulations with varying total concentratidng. The results show a strong effect
of the fluorescent indicator on wave formation. The indicator (the mobile buffer) usue
causes a delay in the wave formation and can even prevent a wave if the total concentr

2 uM

D, =10p m?/s Dy =50 |.n-n2a's

FIG. 13. Simulation of a fertilization calcium wave in the presence of & (M) high affinity indicator
(K =0.24M) for two different values of the indicator diffusion coefficiem, = 10.um?/s (left column) and
D, = 50um?/s (right column). Images of the equatorial slice of an egg are accompanied with a line scan a
the cell diameter that coincides with the symmetry axis. Fertilization is initiated at the left pole of the sphere
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2 uM 10 pM

0 50 ,m 0

calcium indicator-bound calcium

FIG. 14. Calciumwave in the presence of the fluorescent indicator fuka-2 0.24 uM, Dy, =50um?/s, and
b, = 9.5 uM) (left column), as compared to the dynamics of the indicator-bound calcium that mimics the behay
of the fluorescence intensity (right column). Images of the equatorial slice of an egg are accompanied with ¢
scan along the cell diameter that coincides with the symmetry axis. Fertilization is initiated at the left pole of
sphere.

of a mobile buffer rises above a certain threshold for the given initial conditions. For ¢
parameter set, this critical concentration is found to be approximatgipviL1
We next fix the total concentration of the mobile buffetbat =9.5 M and simulate

wave propagation at two different buffer diffusion coefficients. The simulation results :
presented in Fig. 13. It shows that the buffer with a higher diffusion coefficient cause
significant delay in wave formation. However, once initiated, the wave propagates fa
with the higher buffer diffusion coefficient, in agreement with the results for traveling wav
in systems with high excitability. Thus, when comparing the effect of buffers with differe
diffusion coefficients, we note two opposite roles a mobile buffer plays in wave propagat
in the system with high excitability. The buffer with a higher diffusion coefficient slow
down the process of wave formation, but then after a wave has been formed, mak
propagate faster. Overall, in the case of a small cell size, it takes longer for a wav
propagate throughout the cell in the presence of a more diffusive buffer even in the m
of high excitability.
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2 uM

0 50 um

with indicator without indicator

FIG. 15. Simulation of a fertilization calcium wave in the presence of furd«2<0.24 uM, D, =50 um?/s,
andb, = 9.5 uM) (left column), and in the absence of a fluorescentindicator (right column). Images of the equatc
slice of an egg are accompanied with a line scan along the cell diameter that coincides with the symmetry
Fertilization is initiated at the left pole of the sphere.

In biological experiments, one directly measures the fluorescence intensity which
relates well with the bound buffer dynamics. In Fig. 14 we compare the dynamics of
bound form of fura-2 (which will be close to that of fluorescence intensity) with the actt
dynamics of free calcium in the presence of the indicator. It illustrates a nonlinear relati
ship between the two dynamics. Thus, care has to be exercised in extracting the cal
dynamics from the experimentally measured fluorescence intensity [30].

Finally, the calcium waves in the presence of a moderate amount of fura-2 and with
it are compared in Fig. 15. The fluorescent indicator strongly interacts with the initiati
spike and substantially slows down the wave. Thus, even if the calcium dynamics is
rectly extracted from the fluorescent intensity, it can still differ significantly from the act
situation without an indicator.

CONCLUSIONS

We have developed within the Virtual Cell framework a general numerical algorithm tl
performs a pseudo-steady approximation for multicomponent reaction-diffusion syst
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containing fast and slow processes. The algorithm is based on time splitting and
stoichiometry analysis of the reaction network.

The application of the algorithm to studying the effect of calcium buffering on calciu
waves in bistable systems indicates that this effect can be drastically different dependin
the buffer affinity and the system excitability. In systems with low excitability, the mobil
buffers can stop the traveling wave and even reverse its direction, i.e., cause it to bec
self-annihilating, from the physiological point of view. In a more realistic two-variabl
model, the change in the wave direction can be preceded by a discontinuous trans
(bifurcation) from states with fast traveling waves to states with slow ones, as the f
buffer concentration increases. For some interval of parameter values, there may exis
stable traveling waves with very different velocities.

Three-dimensional simulations using realistic geometry and initial conditions shov
strong effect of a fluorescent indicator on fertilization calcium waves. A more diffusi
buffer causes a longer delay in wave formation and, at sufficient concentration, can pre
awave. However, once awave is initiated, it travels faster in the presence of a more diffu
buffer in a system with high excitability.

APPENDIX A

In this appendix, we prove that the solution to Eqgs. (2.6) and (2.8) is independent of
choice of the matrip4, so long as its last — r columns are composed g, ..., l,_;} and
it is non-singular.

Let A; andA; be two different choices of the non-singular matixAfter pseudo-steady
approximation, we have Egs. (2.6) and (2.8). These are equivalent to the system

au R .
BA'Tﬁ:AiTO‘”)U’ i=12 (A1)

where then x n matrix B is given by

0 0
B= (o » ) (A.2)

Here thel,_; isthe(n —r) x (n —r) identity matrix, and different zeros represent differen
zero matrices of suitable dimensions.
Since the lash — r columns ofA; have to bely, ..., I, }, there exists @ x n matrix

(a0
c:<C2 |n,> (A.3)

with C; andC; being suitable sized matrices, such that
A, = A,C. (A.4)

Because bothA; and A, are non-singularC has to be non-singular. This mak€s a
non-singular x r matrix. It is then easy to check that

cl= ¢ 0 (A.5)
—CoCit ) '
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Now using Egs. (A.1) for =2 and Eq. (A.4), we have
T\—lp T AT OU T (f)=
(CH™BC'A; i Aoy, (A.6)

Note that(CT)~1 = (C~1)T. A simple calculation then shows that

0 -Cit
(C€H~BCT = 2. (A7)
0 In—r
The last(n — r) equations in (A.6) are equivalent gb(li -u)=0,i=1...,n—r.Thus

there is no effect due to the matmgcl‘l, and the left hand sides of the firsequations in
(A.6) are zero. In other words, the solution of (A.1) foe 2 is the same as the solution of
(A.1) fori = 1. The proof is therefore complete.

APPENDIX B

In this appendix, we first derive Eq. (3.5) and then show that it reduces to Eq. (3.6) in
low buffer affinity limit.
In the absence of buffering, a one-variable bistable model is described by the equat

ac

ﬁ:Dcv2c+f(c), (B.1)
which is a particular case of Eq. (1.1) with the functibtc) having bistable properties as
shown in Fig. 2a. Equation (B.1) is known to allow for the solutions of a traveling wave ty
c(x 4 vt) = c(¢) with a constant wave speed14, 21]. The wave shape therefore satisfie

vCe = DeCee + T(0), (B.2)

and boundary condition —oc) = Cyin, ¢(4+00) = Cmax. Multiplying Eq. (B.2) byc: and
integrating from—oo to +o00, we derive a general expression for the wave speed

Crnax 1) dc 2 -1
= ([ o) (1L (&) =) ©

Simple dimensional analysis of Eq. (B.1) shows that if we scale the reactionft@rnby
a factor ofa the wave speed will change «'/2. It then follows from Eq. (B.3) that the

integral
* rdc)?
NI ®

will also change as/2. On the other hand, if we scale the whole right hand side of Eq. (B.
by a factor off then the wave speed change$ and the integral (B.4) remains unchanged

In the presence of a mobile buffer the system is governed by Egs. (1.3) with the s
function f. According to [22, Theorem 2.1, p. 15], there exist monotone traveling wa
solutions connecting two stable steady states and a unique wave speed. For solutic
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this type,c(x + vt) =c(§), b(x + vt) =b(&), their wave profiles are now governed by the
equations

vCe DcCee + fo)+ R, (B.5)

Ubg = Dbbgg - R (BG)

For this case, one can also derive the general expression for the wave speed, som
analogous to Eqg. (B.3). To do that, we sum up Egs. (B.5) and (B.6) thus exclR¢geugd
considetb(&) =b(c(&)) (we have used the symbblfor two different functions). Then

ab a [/adb
T A AT (8(?0&) ’ ©D
and
ab a (db
v<1+ 8c> C; = DcCee + Db% <8CCE> + 1. (B.8)

Multiplying Eq. (B.8) byc: and integrating from-oo to +-co, we obtain

+o00 ab +o0o 9 ab Cmax
14+ -—|c?de =D — (= f
U/—oo ( +8C>c§d$ b/—oo 3§<8ccé>dé+/cmm (c)dc

“+0o0o ab Crnax
= —Db/ ——C:Ces d%' + / f(C) dc. (Bg)
_eo OC o

Note that so far we have made no approximations. From now on we consider the «
of fast buffering. This assumption has two consequences. First, on the “slow” time sc
one can consider a buffer to be in a rapid equilibrium with calcium at each spatial point |
We thus use a pseudo-steady approximati®g; 0, to determine the functiob(c) from
Eq. (1.3c)b(c) =bic/(K + c) , where the equilibrium constait = ky/ kon Characterizes
the buffer affinity to calcium. We then find

ab b K

— = B.10

ac (K +0)? ( )
Second, on the “fast” time scale, the buffer effect on calcium dynamics is due to the bu
reaction only, because diffusion is slow. Therefore, on this time scale wR getvb;
from (B.6) and then find the instantaneous distribution:effrom (B.5)

v ab f(c)
ng = HC (l+ %) Cg — DC . (Bll)

Since the integrals in (B.9) can be treated either as integrals over time for some fixed sf.
point (slow time scale) or, equivalently, as integrals over the spatial coordinate for sc
fixed time (fast time scale), we can use both Eq. (B.10) and Eq. (B.11). Substituting tt
in Eq. (B.9), we obtain Eq. (3.5) that gives a general expression for the wave speed af
buffering. Equation (3.5) can be easily extended to the case of multiple buffers.
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We now show that Eq. (3.5) reduces to Eq. (3.6) in the low affinity IK)iCpax > 1. In
this limit, it follows from Eq. (B.10) thabb/ac becomes a constarétb/ac=b; /K. Then
Eq. (B.8) reduces to

by by
v(l+ K) C: = <Dc+ DbK>CS&-‘ + f(©,

which is equivalent to modifying the reaction term in the initial equation (B.1) by the fact
o= (1 + Dpby/D:.K)~! and the entire right hand side of (B.1) by the facfe (1 +
by/K)~1(1+ Dpby/DcK). Then, as we noted above, the integral (B.4) will chamge®/?,

00 D -1/2 00
/_(cg)zd$:(1+ D:E) /_(cg)édg, (B.12)

] o0

where zero index denotes the case of no buffering. Because in the low affinity limit
internal braces in Eq. (3.5) become constants, one can easily see that this equation re
to Eq. (3.6), by taking into account Egs. (B.12) and (B.3).
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